Register once, drag and drop ECAD models into your CAD tool and speed up your design.
Click here for more informationBUK6C2R1-55C
N-channel TrenchMOS intermediate level FET
Intermediate level gate drive N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product has been designed and qualified to the appropriate AEC standard for use in high-performance automotive applications.
Features and benefits
- AEC Q101 compliant
- High current handling capability, up to 320 A
- Low conduction losses due to very low on-state resistance
- Suitable for standard and logic level gate drive sources
- Suitable for thermally demanding environments due to 175 °C rating
Applications
- 12 V automotive systems
- Electric and electro-hydraulic power steering
- Motors, lamps and solenoids
- Start-Stop micro-hybrid applications
- Transmission control
- Ultra high performance power switching
Parametrics
Type number | Package version | Package name | Product status | Channel type | Nr of transistors | VDS [max] (V) | RDSon [max] @ VGS = 10 V (mΩ) | RDSon [max] @ VGS = 5 V (mΩ) | RDSon [max] @ VGS = 4.5 V; @25 C (mΩ) | Tj [max] (°C) | ID [max] (A) | QGD [typ] (nC) | QG(tot) [typ] @ VGS = 10 V (nC) | Ptot [max] (W) | Qr [typ] (nC) | VGSth [typ] (V) | Automotive qualified | Ciss [typ] (pF) | Coss [typ] (pF) | Release date |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BUK6C2R1-55C | SOT427 | D2PAK-7 | End of life | N | 1 | 55 | 2.3 | 3.1 | 3.7 | 175 | 228 | 79 | 253 | 300 | 115 | 2.3 | Y | 12000 | 1075 | 2011-11-22 |
Package
All type numbers in the table below are discontinued.
Type number | Orderable part number, (Ordering code (12NC)) | Status | Marking | Package | Package information | Reflow-/Wave soldering | Packing |
---|---|---|---|---|---|---|---|
BUK6C2R1-55C | BUK6C2R1-55C,118 (934065131118) |
Obsolete | BUK6C2R1 55C |
D2PAK-7 (SOT427) |
SOT427 | SOT427_118 |
Environmental information
All type numbers in the table below are discontinued.
Type number | Orderable part number | Chemical content | RoHS | RHF-indicator |
---|---|---|---|---|
BUK6C2R1-55C | BUK6C2R1-55C,118 | BUK6C2R1-55C |
Series
Documentation (16)
File name | Title | Type | Date |
---|---|---|---|
BUK6C2R1-55C | N-channel TrenchMOS intermediate level FET | Data sheet | 2017-04-20 |
AN10273 | Power MOSFET single-shot and repetitive avalanche ruggedness rating | Application note | 2022-06-20 |
AN10874_ZH | LFPAK MOSFET thermal design guide, Chinese version | Application note | 2020-04-30 |
AN11113_ZH | LFPAK MOSFET thermal design guide - Part 2 | Application note | 2020-04-30 |
AN11156 | Using Power MOSFET Zth Curves | Application note | 2021-01-04 |
AN11158 | Understanding power MOSFET data sheet parameters | Application note | 2020-07-06 |
AN11158_ZH | Understanding power MOSFET data sheet parameters | Application note | 2021-01-04 |
AN11160 | Designing RC Snubbers | Application note | 2024-10-21 |
AN11243 | Failure signature of Electrical Overstress on Power MOSFETs | Application note | 2017-12-21 |
AN11261 | RC Thermal Models | Application note | 2021-03-18 |
AN11599 | Using power MOSFETs in parallel | Application note | 2016-07-13 |
Nexperia_package_poster | Nexperia package poster | Leaflet | 2020-05-15 |
SOT427 | plastic, single-ended surface-mounted package (D2PAK-7); 7 leads; 1.27 mm pitch; 11 mm x 10 mm x 4.3 mm body | Package information | 2020-04-21 |
BUK6C2R1-55C | BUK6C2R1-55C Spice model | SPICE model | 2012-04-12 |
TN00008 | Power MOSFET frequently asked questions and answers | Technical note | 2024-08-09 |
BUK6C2R1-55C | BUK6C2R1-55C Thermal model | Thermal model | 2012-01-20 |
Support
If you are in need of design/technical support, let us know and fill in the answer form we'll get back to you shortly.
Models
File name | Title | Type | Date |
---|---|---|---|
BUK6C2R1-55C | BUK6C2R1-55C Spice model | SPICE model | 2012-04-12 |
BUK6C2R1-55C | BUK6C2R1-55C Thermal model | Thermal model | 2012-01-20 |
How does it work?
The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.