Register once, drag and drop ECAD models into your CAD tool and speed up your design.
Click here for more informationPMGD370XN
Dual N-channel TrechMOS extremely low level FET
Dual extremely low level N-channel enhancement mode Field-Effect Transistor (FET) in a plastic package using TrenchMOS technology. This product is designed and qualified for use in computing, communications, consumer and industrial applications only.
Alternatives
Features and benefits
- Low conduction losses due to low on-state resistance
- Saves PCB space due to small footprint (40 % smaller than SOT23)
- Suitable for high frequency applications due to fast switching characteristics
- Suitable for low gate drive sources
Applications
- Driver circuits
- Switching in portable appliances
Parametrics
Type number | Package version | Package name | Product status | Release date |
---|---|---|---|---|
PMGD370XN | SOT363 | TSSOP6 | End of life | 2011-01-24 |
Package
All type numbers in the table below are discontinued.
Type number | Orderable part number, (Ordering code (12NC)) | Status | Marking | Package | Package information | Reflow-/Wave soldering | Packing |
---|---|---|---|---|---|---|---|
PMGD370XN | PMGD370XN,115 (934057728115) |
Obsolete | D3% empty empty |
TSSOP6 (SOT363) |
SOT363 |
REFLOW_BG-BD-1
WAVE_BG-BD-1 |
SOT363_115 |
Environmental information
All type numbers in the table below are discontinued.
Type number | Orderable part number | Chemical content | RoHS | RHF-indicator |
---|---|---|---|---|
PMGD370XN | PMGD370XN,115 | PMGD370XN |
Documentation (20)
File name | Title | Type | Date |
---|---|---|---|
PMGD370XN | Dual N-channel uTrenchmos (tm) extremely low level FET | Data sheet | 2004-02-26 |
AN10273 | Power MOSFET single-shot and repetitive avalanche ruggedness rating | Application note | 2022-06-20 |
AN10874_ZH | LFPAK MOSFET thermal design guide, Chinese version | Application note | 2020-04-30 |
AN11113_ZH | LFPAK MOSFET thermal design guide - Part 2 | Application note | 2020-04-30 |
AN11158 | Understanding power MOSFET data sheet parameters | Application note | 2020-07-06 |
AN11158_ZH | Understanding power MOSFET data sheet parameters | Application note | 2021-01-04 |
AN11243 | Failure signature of Electrical Overstress on Power MOSFETs | Application note | 2017-12-21 |
AN11261 | RC Thermal Models | Application note | 2021-03-18 |
AN11599 | Using power MOSFETs in parallel | Application note | 2016-07-13 |
AN90032 | Low temperature soldering, application study | Application note | 2022-02-22 |
Nexperia_document_guide_MiniLogic_PicoGate_201901 | PicoGate leaded logic portfolio guide | Brochure | 2019-01-07 |
SOT363 | 3D model for products with SOT363 package | Design support | 2018-12-05 |
Nexperia_package_poster | Nexperia package poster | Leaflet | 2020-05-15 |
TSSOP6_SOT363_mk | plastic, surface-mounted package; 6 leads; 1.3 mm pitch; 2 mm x 1.25 mm x 0.95 mm body | Marcom graphics | 2017-01-28 |
SOT363 | plastic, surface-mounted package; 6 leads; 0.65 mm pitch; 2.1 mm x 1.25 mm x 0.95 mm body | Package information | 2022-06-01 |
REFLOW_BG-BD-1 | Reflow soldering profile | Reflow soldering | 2021-04-06 |
PMGD370XN_10_08_2011 | PMGD370XN_10_08_2011 Spice parameter | SPICE model | 2011-09-13 |
TN00008 | Power MOSFET frequently asked questions and answers | Technical note | 2024-08-09 |
MAR_SOT363 | MAR_SOT363 Topmark | Top marking | 2013-06-03 |
WAVE_BG-BD-1 | Wave soldering profile | Wave soldering | 2021-09-08 |
Support
If you are in need of design/technical support, let us know and fill in the answer form we'll get back to you shortly.
Models
File name | Title | Type | Date |
---|---|---|---|
PMGD370XN_10_08_2011 | PMGD370XN_10_08_2011 Spice parameter | SPICE model | 2011-09-13 |
SOT363 | 3D model for products with SOT363 package | Design support | 2018-12-05 |
How does it work?
The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.