Orderable parts
Type number | Orderable part number | Ordering code (12NC) | Package | Buy from distributors |
---|---|---|---|---|
74AUP1T45GS | 74AUP1T45GS,132 | 935292877132 | SOT1202 | Order product |
Discover Nexperia’s extensive portfolio of diodes, bipolar transistors, ESD protection devices, MOSFETs, GaN FETs, IGBTs, and analog & logic ICs. Our components power virtually every electronic design worldwide - from automotive and industrial to mobile and consumer applications.
Our products find applications across various industries, from automotive and industrial to power, computing, consumer, mobile, and wearables. With a commitment to innovation and sustainability, our components set benchmarks in efficiency, empowering our global customer base to develop energy-efficient and cutting-edge solutions.
Try out our devices and their performance with our comprehensive range of evaluation boards. Gain a deeper understanding of how our products can benefit your application, whether it's optimizing for efficiency, robustness, or reliability. You can find Application focus, Package focus, and different Nexperia Product focus boards here.
Register once, drag and drop ECAD models into your CAD tool and speed up your design.
Click here for more informationLow-power dual supply translating transceiver; 3-state
The 74AUP1T45 is a single bit transceiver featuring two data input-outputs (A and B), a direction control input (DIR) and dual supply pins (VCC(A) and VCC(B)) which enable bidirectional level translation. Both VCC(A) and VCC(B) can be supplied at any voltage between 1.1 V and 3.6 V making the device suitable for interfacing between any of the low voltage nodes (1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V). Pins A and DIR are referenced to VCC(A) and pin B is referenced to VCC(B). A HIGH on DIR allows transmission from A to B and a LOW on DIR allows transmission from B to A.
Schmitt trigger action on all inputs makes the circuit tolerant of slower input rise and fall times across the entire VCC(A) and VCC(B) ranges. The device ensures low static and dynamic power consumption and is fully specified for partial power-down applications using IOFF. The IOFF circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either VCC(A) or VCC(B) are at GND, both A and B are in the high-impedance OFF-state.
Wide supply voltage range:
VCC(A): 1.1 V to 3.6 V
VCC(B): 1.1 V to 3.6 V
High noise immunity
Low static power consumption; ICC = 0.9 μA (maximum)
Suspend mode
Latch-up performance exceeds 100 mA per JESD 78 Class II
Inputs accept voltages up to 3.6 V
Low noise overshoot and undershoot < 10 % of VCC
IOFF circuitry provides partial power-down mode operation
Complies with JEDEC standards:
JESD8-7 (1.2 V to 1.95 V)
JESD8-5 (1.8 V to 2.7 V)
JESD8-B (2.7 V to 3.6 V)
ESD protection:
HBM: ANSI/ESDA/JEDEC JS-001 class 3A exceeds 5000 V
CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
Multiple package options
Specified from -40 °C to +85 °C and -40 °C to +125 °C
Type number | VCC(A) (V) | VCC(B) (V) | Logic switching levels | Output drive capability (mA) | tpd (ns) | Nr of bits | Power dissipation considerations | Tamb (°C) | Package name | Category |
---|---|---|---|---|---|---|---|---|---|---|
74AUP1T45GS | 1.1 - 3.6 | 1.1 - 3.6 | CMOS | ± 4 | 7.1 | 1 | ultra low | -40~125 | XSON6 | Bi-directional | Direction controlled |
Model Name | Description |
---|---|
|
Type number | Orderable part number, (Ordering code (12NC)) | Status | Marking | Package | Package information | Reflow-/Wave soldering | Packing |
---|---|---|---|---|---|---|---|
74AUP1T45GS | 74AUP1T45GS,132 (935292877132) |
Active | p5 |
XSON6 (SOT1202) |
SOT1202 |
REFLOW_BG-BD-1
|
SOT1202_132 |
Type number | Orderable part number | Chemical content | RoHS | RHF-indicator |
---|---|---|---|---|
74AUP1T45GS | 74AUP1T45GS,132 | 74AUP1T45GS |
File name | Title | Type | Date |
---|---|---|---|
74AUP1T45 | Low-power dual supply translating transceiver; 3-state | Data sheet | 2023-07-20 |
Nexperia_document_guide_Logic_translators | Nexperia Logic Translators | Brochure | 2021-04-12 |
Nexperia_document_guide_MiniLogic_MicroPak_201808 | MicroPak leadless logic portfolio guide | Brochure | 2018-09-03 |
SOT1202 | 3D model for products with SOT1202 package | Design support | 2023-02-02 |
aup1t45 | aup1t45 IBIS model | IBIS model | 2014-12-21 |
Nexperia_document_leaflet_Logic_AUP_technology_portfolio_201904 | Nexperia_document_leaflet_Logic_AUP_technology_portfolio_201904 | Leaflet | 2019-04-12 |
Nexperia_package_poster | Nexperia package poster | Leaflet | 2020-05-15 |
SOT1202 | plastic, leadless extremely thin small outline package; 6 terminals; 0.35 mm pitch; 1 mm x 1mm x 0.35 mm body | Package information | 2022-06-01 |
SOT1202_132 | XSON6; Reel pack for SMD, 7''; Q3/T4 product orientation | Packing information | 2020-04-21 |
74AUP1T45GS_Nexperia_Product_Reliability | 74AUP1T45GS Nexperia Product Reliability | Quality document | 2024-06-16 |
REFLOW_BG-BD-1 | Reflow soldering profile | Reflow soldering | 2021-04-06 |
MAR_SOT1202 | MAR_SOT1202 Topmark | Top marking | 2013-06-03 |
If you are in need of design/technical support, let us know and fill in the answer form we'll get back to you shortly.
Model Name | Description |
---|---|
|
Type number | Orderable part number | Ordering code (12NC) | Status | Packing | Packing Quantity | Buy online |
---|---|---|---|---|---|---|
74AUP1T45GS | 74AUP1T45GS,132 | 935292877132 | Active | SOT1202_132 | 5,000 | Order product |
As a Nexperia customer you can order samples via our sales organization.
If you do not have a direct account with Nexperia our network of global and regional distributors is available and equipped to support you with Nexperia samples. Check out the list of official distributors.
The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.