Orderable parts
Type number | Orderable part number | Ordering code (12NC) | Package | Buy from distributors |
---|---|---|---|---|
74LVCH16373ADGG-Q100 | 74LVCH16373ADGG-QJ | 935304872118 | SOT362-1 | Order product |
Discover Nexperia’s extensive portfolio of diodes, bipolar transistors, ESD protection devices, MOSFETs, GaN FETs, IGBTs, and analog & logic ICs. Our components power virtually every electronic design worldwide - from automotive and industrial to mobile and consumer applications.
Our products find applications across various industries, from automotive and industrial to power, computing, consumer, mobile, and wearables. With a commitment to innovation and sustainability, our components set benchmarks in efficiency, empowering our global customer base to develop energy-efficient and cutting-edge solutions.
Register once, drag and drop ECAD models into your CAD tool and speed up your design.
Click here for more information16-bit D-type transparent latch with 5 V tolerant inputs/outputs; 3-state
The 74LVC16373A-Q100 and 74LVCH16373A-Q100 are 16-bit D-type transparent latches with 3-state outputs. The devices can be used as two 8-bit transparent latches or a single 16-bit transparent latch. The devices feature two latch enables (1LE and 2LE) and two output enables (1OE and 2OE), each controlling 8-bits. When nLE is HIGH, data at the inputs enter the latches. In this condition the latches are transparent, a latch output will change each time its corresponding D-input changes. When nLE is LOW the latches store the information that was present at the inputs a set-up time preceding the HIGH-to-LOW transition of nLE. A HIGH on nOE causes the outputs to assume a high-impedance OFF-state. Operation of the nOE input does not affect the state of the latches. Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in mixed 3.3 V and 5 V environments.
Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times.
This device is fully specified for partial power down applications using IOFF. The IOFF circuitry disables the output, preventing the potentially damaging backflow current through the device when it is powered down.
Bus hold on the data inputs eliminates the need for external pull-up resistors to hold unused inputs.
This product has been qualified to the Automotive Electronics Council (AEC) standard Q100 (Grade 1) and is suitable for use in automotive applications.
Automotive product qualification in accordance with AEC-Q100 (Grade 1)
Specified from -40 °C to +85 °C and from -40 °C to +125 °C
Overvoltage tolerant inputs to 5.5 V
Wide supply voltage range from 1.2 V to 3.6 V
CMOS low power dissipation
MULTIBYTE flow-through standard pinout architecture
Multiple low inductance supply pins for minimum noise and ground bounce
Direct interface with TTL levels
All data inputs have bus hold (74LVCH16373A-Q100 only)
IOFF circuitry provides partial Power-down mode operation
ESD protection:
HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
Type number | VCC (V) | Logic switching levels | Output drive capability (mA) | tpd (ns) | Power dissipation considerations | Tamb (°C) | Package name |
---|---|---|---|---|---|---|---|
74LVCH16373ADGG-Q100 | 1.2 - 3.6 | TTL | ± 24 | 3 | low | -40~125 | TSSOP48 |
Model Name | Description |
---|---|
|
Type number | Orderable part number, (Ordering code (12NC)) | Status | Marking | Package | Package information | Reflow-/Wave soldering | Packing |
---|---|---|---|---|---|---|---|
74LVCH16373ADGG-Q100 | 74LVCH16373ADGG-QJ (935304872118) |
Active | LVCH16373A |
TSSOP48 (SOT362-1) |
SOT362-1 |
SSOP-TSSOP-VSO-WAVE
|
SOT362-1_118 |
Type number | Orderable part number | Chemical content | RoHS | RHF-indicator |
---|---|---|---|---|
74LVCH16373ADGG-Q100 | 74LVCH16373ADGG-QJ | 74LVCH16373ADGG-Q100 |
File name | Title | Type | Date |
---|---|---|---|
74LVC_LVCH16373A_Q100 | 16-bit D-type transparent latch with 5 V tolerant inputs/outputs; 3-state | Data sheet | 2024-04-23 |
AN11009 | Pin FMEA for LVC family | Application note | 2019-01-09 |
AN263 | Power considerations when using CMOS and BiCMOS logic devices | Application note | 2023-02-07 |
SOT362-1 | 3D model for products with SOT362-1 package | Design support | 2020-01-22 |
lvch16373a | lvch16373a IBIS model | IBIS model | 2013-04-09 |
Nexperia_package_poster | Nexperia package poster | Leaflet | 2020-05-15 |
TSSOP48_SOT362-1_mk | plastic, thin shrink small outline package; 48 leads; 0.5 mm pitch; 12.8 mm x 6.1 mm x 1.2 mm body | Marcom graphics | 2017-01-28 |
SOT362-1 | plastic thin shrink small outline package; 48 leads; body width 6.1 mm | Package information | 2024-01-05 |
SOT362-1_118 | TSSOP48; Reel pack for SMD, 13''; Q1/T1 product orientation | Packing information | 2020-04-21 |
74LVCH16373ADGG-Q100_Nexperia_Product_Reliability | 74LVCH16373ADGG-Q100 Nexperia Product Reliability | Quality document | 2024-06-16 |
SSOP-TSSOP-VSO-WAVE | Footprint for wave soldering | Wave soldering | 2009-10-08 |
If you are in need of design/technical support, let us know and fill in the answer form we'll get back to you shortly.
File name | Title | Type | Date |
---|---|---|---|
lvch16373a | lvch16373a IBIS model | IBIS model | 2013-04-09 |
SOT362-1 | 3D model for products with SOT362-1 package | Design support | 2020-01-22 |
Model Name | Description |
---|---|
|
Type number | Orderable part number | Ordering code (12NC) | Status | Packing | Packing Quantity | Buy online |
---|---|---|---|---|---|---|
74LVCH16373ADGG-Q100 | 74LVCH16373ADGG-QJ | 935304872118 | Active | SOT362-1_118 | 2,000 | Order product |
As a Nexperia customer you can order samples via our sales organization.
If you do not have a direct account with Nexperia our network of global and regional distributors is available and equipped to support you with Nexperia samples. Check out the list of official distributors.
The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.