Orderable parts
Type number | Orderable part number | Ordering code (12NC) | Package | Buy from distributors |
---|---|---|---|---|
HEF4521BT | HEF4521BT,653 | 933406770653 | SOT109-1 | Order product |
Discover Nexperia’s extensive portfolio of diodes, bipolar transistors, ESD protection devices, MOSFETs, GaN FETs, IGBTs, and analog & logic ICs. Our components power virtually every electronic design worldwide - from automotive and industrial to mobile and consumer applications.
Our products find applications across various industries, from automotive and industrial to power, computing, consumer, mobile, and wearables. With a commitment to innovation and sustainability, our components set benchmarks in efficiency, empowering our global customer base to develop energy-efficient and cutting-edge solutions.
Try out our devices and their performance with our comprehensive range of evaluation boards. Gain a deeper understanding of how our products can benefit your application, whether it's optimizing for efficiency, robustness, or reliability. You can find Application focus, Package focus, and different Nexperia Product focus boards here.
Register once, drag and drop ECAD models into your CAD tool and speed up your design.
Click here for more information24-stage frequency divider and oscillator
The HEF4521B consists of a chain of 24 toggle flip-flops with an overriding asynchronous master reset input (MR), and an input circuit that allows three modes of operation. The single inverting stage (A2 to Y2) functions as: a crystal oscillator, an input buffer for an external oscillator or in combination with A1 as an RC oscillator. The crystal oscillator operates in Low-power mode when pins VSS1 and VDD1 are supplied via external resistors.
Each flip-flop divides the frequency of the previous flip-flop by two, consequently the HEF4521B counts up to 224 = 16777216. The counting advances on the HIGH-to-LOW transition of the clock (A2). The outputs from each of the last seven stages (218 to 224) are available for additional flexibility.
It operates over a recommended VDD power supply range of 3 V to 15 V referenced to VSS (usually ground). Unused inputs must be connected to VDD, VSS, or another input.
Wide supply voltage range from 3.0 V to 15.0 V
CMOS low power dissipation
High noise immunity
Low power crystal oscillator operation
Fully static operation
5 V, 10 V, and 15 V parametric ratings
Standardized symmetrical output characteristics
Complies with JEDEC standard JESD 13-B
HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
Specified from -40 °C to +85 °C
Type number | VCC (V) | Output drive capability (mA) | Logic switching levels | tpd (ns) | Power dissipation considerations | Tamb (°C) | Rth(j-a) (K/W) | Ψth(j-top) (K/W) | Rth(j-c) (K/W) | Package name |
---|---|---|---|---|---|---|---|---|---|---|
HEF4521BT | 3.0 - 15 | ± 2.4 | CMOS | 220 | medium | -40~85 | 65 | 1 | 22.8 | SO16 |
Model Name | Description |
---|---|
|
Type number | Orderable part number, (Ordering code (12NC)) | Status | Marking | Package | Package information | Reflow-/Wave soldering | Packing |
---|---|---|---|---|---|---|---|
HEF4521BT | HEF4521BT,653 (933406770653) |
Active | HEF4521BT |
SO16 (SOT109-1) |
SOT109-1 |
SO-SOJ-REFLOW
SO-SOJ-WAVE WAVE_BG-BD-1 |
Not available |
All type numbers in the table below are discontinued.
Type number | Orderable part number, (Ordering code (12NC)) | Status | Marking | Package | Package information | Reflow-/Wave soldering | Packing |
---|---|---|---|---|---|---|---|
HEF4521BT | HEF4521BT,652 (933406770652) |
Withdrawn / End-of-life | HEF4521BT |
SO16 (SOT109-1) |
SOT109-1 |
SO-SOJ-REFLOW
SO-SOJ-WAVE WAVE_BG-BD-1 |
SOT109-1_652 |
Type number | Orderable part number | Chemical content | RoHS | RHF-indicator |
---|---|---|---|---|
HEF4521BT | HEF4521BT,653 | HEF4521BT |
All type numbers in the table below are discontinued.
Type number | Orderable part number | Chemical content | RoHS | RHF-indicator |
---|---|---|---|---|
HEF4521BT | HEF4521BT,652 | HEF4521BT |
File name | Title | Type | Date |
---|---|---|---|
HEF4521B | 24-stage frequency divider and oscillator | Data sheet | 2024-08-19 |
AN11051 | Pin FMEA HEF4000 family | Application note | 2019-01-09 |
SOT109-1 | 3D model for products with SOT109-1 package | Design support | 2020-01-22 |
Nexperia_package_poster | Nexperia package poster | Leaflet | 2020-05-15 |
SO16_SOT109-1_mk | plastic, small outline package; 16 leads; 1.27 mm pitch; 9.9 mm x 3.9 mm x 1.35 mm body | Marcom graphics | 2017-01-28 |
SOT109-1 | plastic, small outline package; 16 leads; 1.27 mm pitch; 9.9 mm x 3.9 mm x 1.75 mm body | Package information | 2023-11-07 |
HEF4521BT_Nexperia_Product_Reliability | HEF4521BT Nexperia Product Reliability | Quality document | 2024-06-16 |
SO-SOJ-REFLOW | Footprint for reflow soldering | Reflow soldering | 2009-10-08 |
SO-SOJ-WAVE | Footprint for wave soldering | Wave soldering | 2009-10-08 |
WAVE_BG-BD-1 | Wave soldering profile | Wave soldering | 2021-09-08 |
If you are in need of design/technical support, let us know and fill in the answer form we'll get back to you shortly.
File name | Title | Type | Date |
---|---|---|---|
SOT109-1 | 3D model for products with SOT109-1 package | Design support | 2020-01-22 |
Model Name | Description |
---|---|
|
Type number | Orderable part number | Ordering code (12NC) | Status | Packing | Packing Quantity | Buy online |
---|---|---|---|---|---|---|
HEF4521BT | HEF4521BT,653 | 933406770653 | Active | Not available | 2,500 | Order product |
As a Nexperia customer you can order samples via our sales organization.
If you do not have a direct account with Nexperia our network of global and regional distributors is available and equipped to support you with Nexperia samples. Check out the list of official distributors.
The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.