Register once, drag and drop ECAD models into your CAD tool and speed up your design.
Click here for more information74LVCH16245ADL
16-bit bus transceiver with direction pin; 5 V tolerant; 3-state
The 74LVC16245A; 74LVCH16245A is a 16-bit transceiver with 3-state outputs. The device can be used as two 8-bit transceivers or one 16-bit transceiver. The device features two output enables (1OE and 2OE) each controlling eight outputs, and two send/receive (1DIR and 2DIR) inputs for direction control. A HIGH on nOE causes the outputs to assume a high-impedance OFF-state. Inputs can be driven from either 3.3 V or 5 V devices. This feature allows the use of these devices as translators in mixed 3.3 V and 5 V environments.
Schmitt-trigger action at all inputs makes the circuit tolerant of slower input rise and fall times.
This device is fully specified for partial power down applications using IOFF. The IOFF circuitry disables the output, preventing the potentially damaging backflow current through the device when it is powered down.
The 74LVCH16245A bus hold on data inputs eliminates the need for external pull-up resistors to hold unused inputs.
Alternatives
Features and benefits
Overvoltage tolerant inputs to 5.5 V
Wide supply voltage range from 1.2 V to 3.6 V
CMOS low power dissipation
MULTIBYTE flow-through standard pin-out architecture
Low inductance multiple power and ground pins for minimum noise and ground bounce
Direct interface with TTL levels
IOFF circuitry provides partial Power-down mode operation
All data inputs have bus hold (74LVCH16245A only)
Complies with JEDEC standard:
JESD8-7A (1.65 V to 1.95 V)
JESD8-5A (2.3 V to 2.7 V)
JESD8-C/JESD36 (2.7 V to 3.6 V)
ESD protection:
HBM: ANSI/ESDA/JEDEC JS-001 class 2 exceeds 2000 V
CDM: ANSI/ESDA/JEDEC JS-002 class C3 exceeds 1000 V
Specified from -40 °C to +85 °C and -40 °C to +125 °C
Parametrics
Type number | Package name |
---|---|
74LVCH16245ADL | SSOP48 |
PCB Symbol, Footprint and 3D Model
Model Name | Description |
---|---|
|
Package
All type numbers in the table below are discontinued.
Type number | Orderable part number, (Ordering code (12NC)) | Status | Marking | Package | Package information | Reflow-/Wave soldering | Packing |
---|---|---|---|---|---|---|---|
74LVCH16245ADL | 74LVCH16245ADL,112 (935238460112) |
Obsolete | LVCH16245A |
SSOP48 (SOT370-1) |
SOT370-1 |
SSOP-TSSOP-VSO-REFLOW
SSOP-TSSOP-VSO-WAVE |
Not available |
74LVCH16245ADL,118 (935238460118) |
Obsolete | LVCH16245A | SOT370-1_118 |
Environmental information
All type numbers in the table below are discontinued.
Type number | Orderable part number | Chemical content | RoHS | RHF-indicator |
---|---|---|---|---|
74LVCH16245ADL | 74LVCH16245ADL,112 | 74LVCH16245ADL | ||
74LVCH16245ADL | 74LVCH16245ADL,118 | 74LVCH16245ADL |
Series
Documentation (7)
File name | Title | Type | Date |
---|---|---|---|
74LVC_LVCH16245A | 16-bit bus transceiver with direction pin; 5 V tolerant; 3-state | Data sheet | 2024-04-23 |
AN11009 | Pin FMEA for LVC family | Application note | 2019-01-09 |
lvch16245a | lvch16245a IBIS model | IBIS model | 2013-04-09 |
Nexperia_package_poster | Nexperia package poster | Leaflet | 2020-05-15 |
SOT370-1 | plastic, shrink small outline package; 48 leads; 0.635 mm pitch; 15.9 mm x 7.5 mm x 2.8 mm body | Package information | 2020-04-21 |
SSOP-TSSOP-VSO-REFLOW | Footprint for reflow soldering | Reflow soldering | 2009-10-08 |
SSOP-TSSOP-VSO-WAVE | Footprint for wave soldering | Wave soldering | 2009-10-08 |
Support
If you are in need of design/technical support, let us know and fill in the answer form we'll get back to you shortly.
Models
File name | Title | Type | Date |
---|---|---|---|
lvch16245a | lvch16245a IBIS model | IBIS model | 2013-04-09 |
PCB Symbol, Footprint and 3D Model
Model Name | Description |
---|---|
|
How does it work?
The interactive datasheets are based on the Nexperia MOSFET precision electrothermal models. With our interactive datasheets you can simply specify your own conditions interactively. Start by changing the values of the conditions. You can do this by using the sliders in the condition fields. By dragging the sliders you will see how the MOSFET will perform at the new conditions set.